Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine.
نویسندگان
چکیده
The gene coding for thermophilic xylose (glucose) isomerase of Clostridium thermosulfurogenes was isolated and its complete nucleotide sequence was determined. The structural gene (xylA) for xylose isomerase encodes a polypeptide of 439 amino acids with an estimated molecular weight of 50,474. The deduced amino acid sequence of thermophilic C. thermosulfurogenes xylose isomerase displayed higher homology with those of thermolabile xylose isomerases from Bacillus subtilis (70%) and Escherichia coli (50%) than with those of thermostable xylose isomerases from Ampullariella (22%), Arthrobacter (23%), and Streptomyces violaceoniger (24%). Several discrete regions were highly conserved throughout the amino acid sequences of all these enzymes. To identify the histidine residue of the active site and to elucidate its function during enzymatic xylose or glucose isomerization, histidine residues at four different positions in the C. thermosulfurogenes enzyme were individually modified by site-directed mutagenesis. Substitution of His101 by phenylalanine completely abolished enzyme activity whereas substitution of other histidine residues by phenylalanine had no effect on enzyme activity. When His101 was changed to glutamine, glutamic acid, asparagine, or aspartic acid, approximately 10-16% of wild-type enzyme activity was retained by the mutant enzymes. The Gln101 mutant enzyme was resistant to diethylpyrocarbonate inhibition which completely inactivated the wild-type enzyme, indicating that His101 is the only essential histidine residue involved directly in enzyme catalysis. The constant Vmax values of the Gln101, Glu101, Asn101, and Asp101 mutant enzymes over the pH range of 5.0-8.5 indicate that protonation of His101 is responsible for the reduced Vmax values of the wild-type enzyme at pH below 6.5. Deuterium isotope effects by D-[2-2H]glucose on the rate of glucose isomerization indicated that hydrogen transfer and not substrate ring opening is the rate-determining step for both the wild-type and Gln101 mutant enzymes. These results suggest that the enzymatic sugar isomerization does not involve a histidine-catalyzed proton transfer mechanism. Rather, essential histidine functions to stabilize the transition state by hydrogen bonding to the C5 hydroxyl group of the substrate and this enables a metal-catalyzed hydride shift from C2 to C1.
منابع مشابه
Purification and characterization of thermostable glucose isomerase from Clostridium thermosulfurogenes and Thermoanaerobacter strain B6A.
Glucose isomerases produced by Thermoanaerobacter strain B6A and Clostridium thermosulfurogenes strain 4B were purified 10-11-fold to homogeneity and their physicochemical and catalytic properties were determined. Both purified enzymes displayed very similar properties (native Mr 200,000, tetrameric subunit composition, and apparent pH optima 7.0-7.5). The enzymes were stable at pH 5.5-12.0, an...
متن کاملIdentification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.
Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each...
متن کاملThe role of active-site aromatic and polar residues in catalysis and substrate discrimination by xylose isomerase.
The functions of individual amino acid residues in the active site of Thermoanaerobacterium thermosulfurigenes D-xylose ketol-isomerase (EC 5.3.1.5) were studied by site-directed substitution. The role of aromatic residues in the active-site pocket was not limited to the creation of a hydrophobic environment. For example, Trp-188 provided for substrate binding and Trp-139 allowed for the discri...
متن کاملMetal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography
Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in E...
متن کاملEngineering the substrate specificity of xylose isomerase.
Xylose isomerase (XI) catalyzes the isomerization and epimerization of hexoses, pentoses and tetroses. In order to clarify the reasons for the low reaction efficiency of a pentose sugar, L-arabinose, we determined the crystal structure of Streptomyces rubiginosus XI complexed with L-arabinose. The crystal structure revealed that, when compared with D-xylose and D-glucose, L-arabinose binds to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 31 شماره
صفحات -
تاریخ انتشار 1990